9,855 research outputs found

    Doubly virtual Compton scattering and the beam normal spin asymmetry

    Get PDF
    We construct an invariant basis for Compton scattering with two virtual photons (VVCS). The basis tensors are chosen to be gauge invariant and orthogonal to each other. The properties of the corresponding 18 invariant amplitudes are studied in detail. We consider the special case of elastic VVCS with the virtualities of the initial and final photons equal. The invariant basis for VVCS in this orthogonal form does not exist in the literatur. We furthermore use this VVCS tensor for a calculation of the beam normal spin asymmetry in the forward kinematics. For this, we relate the invariant amplitudes to the helicity amplitudes of the VVCS reaction. The imaginary parts of these latter are related to the inclusive cross section by means of the optical theorem. We use the phenomenological value of the transverse cross section ĻƒTāˆ¼0.1\sigma_T\sim0.1 mbarn and the Callan-Gross relation which relates the longitudinal cross section ĻƒL\sigma_L to the transverse one. The result of the calculation agrees with an existing calculation and predicts the negative values of the asymmetry BnB_n of the order of 4-6 ppm in the energy range from 6 to 45 ppm and for very forward angles.Comment: 13 pages, 2 figures, revtex, submitted to Phys. Rev. C; new version: two figures added, typos correcte

    A Formal Context Representation Framework for Network-Enabled Cognition

    No full text
    Network-accessible resources are inherently contextual with respect to the specific situations (e.g., location and default assumptions) in which they are used. Therefore, the explicit conceptualization and representation of contexts is required to address a number of problems in Network- Enabled Cognition (NEC). We propose a context representation framework to address the computational specification of contexts. Our focus is on developing a formal model of context for the unambiguous and effective delivery of data and knowledge, in particular, for enabling forms of automated inference that address contextual differences between agents in a distributed network environment. We identify several components for the conceptualization of contexts within the context representation framework. These include jurisdictions (which can be used to interpret contextual data), semantic assumptions (which highlight the meaning of data), provenance information and inter-context relationships. Finally, we demonstrate the application of the context representation framework in a collaborative military coalition planning scenario. We show how the framework can be used to support the representation of plan-relevant contextual information

    Epigenetic interactions

    Get PDF

    Study of the immobilization antigens of Paramecium aurelia

    Get PDF

    Alien Registration- Mott, Cecil R. (South Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/20253/thumbnail.jp

    From: John R. Mott (8/10/59)

    Get PDF

    Alternative Means Jurisprudence in Kansas: Why Wright is Wrong

    Get PDF
    This is the published version

    From: John R. Mott (1/2/60)

    Get PDF

    Insulator-metal-insulator transition and selective spectral weight transfer in a disordered strongly correlated system

    Full text link
    We investigate the metal insulator transitions at finite temperature for the Hubbard model with diagonal alloy disorder. We solve the dynamical mean field theory equations with the non crossing approximation and we use the coherent potential approximation to handle disorder. The excitation spectrum is given for various correlation strength UU and disorder. Two successive metal insulator transitions are observed at integer filling values as UU is increased. An important selective transfer of spectral weight arises upon doping. The strong influence of the temperature on the low energy dynamics is studied in details.Comment: submitted to Phys. Rev.

    Quantum glass phases in the disordered Bose-Hubbard model

    Full text link
    The phase diagram of the Bose-Hubbard model in the presence of off-diagonal disorder is determined using Quantum Monte Carlo simulations. A sequence of quantum glass phases intervene at the interface between the Mott insulating and the Superfluid phases of the clean system. In addition to the standard Bose glass phase, the coexistence of gapless and gapped regions close to the Mott insulating phase leads to a novel Mott glass regime which is incompressible yet gapless. Numerical evidence for the properties of these phases is given in terms of global (compressibility, superfluid stiffness) and local (compressibility, momentum distribution) observables
    • ā€¦
    corecore